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Exactly solvable quantum spin ladders associated with the
orthogonal and symplectic Lie algebras

M T Batchelor†, J de Gier†, J Links‡ and M Maslen†
† Department of Mathematics, School of Mathematical Sciences, The Australian National
University, Canberra ACT 0200, Australia
‡ Centre for Mathematical Physics, Department of Mathematics, The University of Queensland,
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Abstract. We extend the results of spin ladder models associated with the Lie algebrassu(2n) to
the case of the orthogonal and symplectic algebraso(2n), sp(2n) wheren is the number of legs for
the system. Two classes of models are found whose symmetry, either orthogonal or symplectic,
has an explicitn dependence. Integrability of these models is shown for an arbitrary coupling of
XX-type rung interactions and applied magnetic field term.

The study of quantum spin ladders has recently been the focus of both theoretical and
experimental investigations [1]. Spin ladders exhibit interesting low-dimensional quantum
physics, including spin liquid phases and fractional magnetization plateaus. From the
theoretical point of view, many researchers are now applying the procedures of the quantum
inverse scattering method (QISM) and associated Bethe Ansatz techniques in order to obtain
non-perturbative results for models of spin ladder systems. Originally this was undertaken
in [2–4] by using the co-algebra structure of the Yangian algebra (in fact a Hopf algebra)
which underlies the applicability of the QISM. In essence, the co-algebra mapping allows the
one-dimensional model to be mapped to multiple copies by way of a homomorphism. As such,
the algebraic properties are preserved and consequently integrability is maintained, allowing
for analyses of these models by standard methods.

Subsequently, an alternative viewpoint has been adopted in which the extension from the
one-dimensional system to the ladder model is accomodated by an extension of the symmetry
of the system. By such an approach, the ladder is considered as a quasi one-dimensional system
whereby the rung interactions of the ladder are represented as local symmetry operators. In
this manner, the rung interactions may be coupled to the bulk ladder model without violating
integrability. This in turn again facilitates the application of many known techniques that
have been developed in the rich field of integrable models in order to determine ground state
properties, elementary excitation spectra and phase diagrams.

One of the first works in this latter direction is that of Wang [5] in which an integrable
formulation of a two-leg spin-12 model was given in terms of the maximal local (i.e. rung space)
symmetry algebra ofsu(4). In this model rung interactions are coupled with arbitrary strength
and a phase diagram was obtained in terms of the coupling parameter. In the same paper
another model based onsu(3|1) supersymmetry was also presented and it became apparent
that such an approach could be extended to incorporate other forms of symmetry. In [6] it
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was demonstrated that the natural extension ton-leg models gave rise tosu(2n) symmetry.
Other models have also been considered using a ‘non-standard’ solution of the Yang–Baxter
relation [7, 8] and others based onsu(4) andsu(2|2) symmetry [9] in the context of fermion
ladder systems. Extension of this approach to at–J ladder model which is also of significant
physical interest can be found in [10]. Phase diagrams and magnetization plateaus have been
calculated exactly for two- and three-leg spin ladders [5,11,12].

In the spirit of [6] our goal here is to identifyn-leg ladder models arising through the
orthogonal and symplectic Lie algebras. We find two distinct classes which are integrable for
arbitrary coupling ofXX rung interactions and magnetic field terms. A curious feature of the
models we obtain is that the symmetry algebra has an explicit dependence on the number of
legs of the system.

Throughout, we will express all operators in terms of the Pauli matrices

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σ z =

(
1 0
0 −1

)
(1)

which act on a two-dimensional space that we denoteV . Furthermore, we use a superscript
(l) to denote an operator acting on the leg labelled byl and use subscripts to label the rungs.

In order to construct a model on ann-leg ladder we begin by introducing a metric for the
2n-dimensional spaceW = V ⊗n by

α = σx ⊗ σy ⊗ σx ⊗ σy ⊗ · · · ⊗X
=
∏
l odd

(σ x)(l)
∏
l′ even

(σ y)(l
′) (2)

whereX = σx for an odd number of legs andσy for the even case. The metric has the useful
properties,

α = α−1 = α† = (−1)[n/2]αt (3)

with [n/2] being the integer part ofn/2. For any basis{vi}2ni=1 of W , the set of matrices

Aij = eij − αeji α (4)

with the elementary matriceseij satisfyingeij v
k = δkj v

i , in fact close to form a Lie algebra.
The commutation relations amongst the generators read

[Aij , A
k
l ] = δkjAil − δil Akj + αikα

l
mA

m
j − αljαmk Aim (5)

with implied summation over the repeated indexm. For the instance where [n/2] is even these
matrices realize the Lie algebrao(2n) while in the odd case it issp(2n).

As in thegl(2n) invariant models we begin with the observation that the permutation
operator onWi ⊗Wj is expressible in terms of the Pauli matrices by

Pij = 1

2n

n∏
l=1

(I + σ (l)i · σ (l)j ). (6)

We now introduce a Temperley–Lieb operator [13],

Qij = (I ⊗ α)P tj (I ⊗ αt) (7)

with the properties,

Q2 = (−1)[n/2]2nQ

Qi(i+1) = Qi(i+1)Q(i+1)(i+2)Qi(i+1)

Qi(i+1) = Qi(i+1)Q(i−1)iQi(i+1).

(8)
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This operator onWi ⊗Wj reads, when expressed in Pauli matrices,

Qij = (−1)[n/2]

2n

n∏
l=1

(I − σ (l)i ·M(l)σ
(l)
j ) (9)

where the matrixM(l) is diagonal with entries

M(l) = diag((−1)l, (−1)l, 1). (10)

It is well known that given any Temperley–Lieb operator there is an associated integrable
model. The operator defined by

Ř(u) = I +
(−1)[n/2] sinhu

sinh(γ − u) Q (11)

gives a solution of the Yang–Baxter equation,

Ř12(u)Ř23(u + v)Ř12(v) = Ř23(v)Ř12(u + v)Ř23(u) (12)

where the parameterγ is determined by

coshγ = 2(n−1). (13)

Furthermore, the set of operators{Gi = (−1)[n/2]Pi(i+1), Ei = Qi(i+1)}L−1
i=1 together give

a representation of the Birman–Wenzl–Murakami algebra [14]. Using the results of [15], we
can now obtain the operator

Ř(u) = I + uP − u

u + 2(n−1) − (−1)[n/2]
Q (14)

which also gives a solution of the Yang–Baxter equation (12).
By the standard approach, integrable models with periodic boundary conditions of the

form

H =
L−1∑
i=1

Hi(i+1) +HL1 (15)

can be obtained from the above solutions of the Yang–Baxter equation, where the local
HamiltoniansHij read

Hij = d

du
Řij (u)

∣∣∣∣
u=0

. (16)

For the Temperley–Lieb models we obtain

Hij = (−1)[n/2]

sinhγ
Qij

= 1

2n sinhγ

n∏
l=1

(I − σ (l)i ·M(l)σ
(l)
j ) (17)

while in the Birman–Wenzl–Murakami case we have

Hij = Pij − 1

2(n−1) − (−1)[n/2]
Qij

= 1

2n

n∏
l=1

(I + σ (l)i · σ (l)j )−
(−1)[n/2]

2n(2(n−1) − (−1)[n/2])

n∏
l=1

(I − σ (l)i ·M(l)σ
(l)
j ). (18)

By our construction, the above Hamiltonians are invariant with respect to the algebra
elements defined by (4). Additionally, we can couple to these modelsXX rung interactions
and applied magnetic field terms

1
2J

L∑
i=1

n−1∑
l=1

h
(l)
i + 1

2B

L∑
i=1

n∑
l=1

g
(l)
i (19)
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where

h
(l)
i = (σ x)(l)i (σ x)(l+1)

i + (σ y)(l)i (σ
y)
(l+1)
i

g
(l)
i = (σ z)(l)i .

(20)

For an even number of legs we can also impose periodic boundary conditions on the rungs
giving rise to a tube model as done in [6]. The rung interactions and magnetic field terms (19)
commute with the Hamiltonians (17) and (18) as a consequence of the fact that they can be
expressed in terms of the symmetry algebra elements (4). These terms therefore do not destroy
integrability.

It is important to mention that the Bethe Ansatz solutions of the models discussed above
are all known. Using the Temperley–Lieb equivalence, the spectra of the above Temperley–
Lieb models (in the absence of rung interactions and field terms) coincide with that of the
XXZ chain with the choice

1 = −2(n−1) (21)

where1 is theXXZ anisotropy. In this limit the Temperley–Lieb ladder models are thus
massive for alln > 1. For the Birman–Wenzl–Murakami class the solutions were originally
obtained by Reshetikhin using the analytic Bethe Ansatz approach [16]. More recently, these
results have been rederived in an algebraic fashion by Martins and Ramos [17]. For both
the Temperley–Lieb and the Birman–Wenzl–Murakami models the rung and field terms are
diagonal on the Bethe states.

As an example we briefly discuss the simplest Birman–Wenzl–Murakami ladder with field
and rung terms. For this case, that of a two-leg model corresponding tosp(4) symmetry, the
energy levels of the Hamiltonian are given by

E = L +
M1∑
i=1

1

u2
i − 1/4

+ J (M1− L) +B(M1− 2M2) (22)

where the parametersui are solutions of the Bethe Ansatz equations

−
(
ui + 1/2

ui − 1/2

)L
=

M1∏
j=1

ui − uj + 1

ui − uj − 1

M2∏
k=1

ui − vk − 1

ui − vk + 1
j = 1, 2, . . . ,M1

−1=
M1∏
j=1

uj − vi − 1

uj − vi + 1

M2∏
k=1

vk − vi + 2

vk − vi − 2
i = 1, 2, . . . ,M2.

(23)

Above, the parametersM1,M2 are restricted to the intervals

06 M1 6 2L

06 M2 6 min(M1, L).

The expression for the energy (22) was derived using the the following rung basis states, in
terms of which the local rung interactions and field terms are diagonal:

|0〉 = 1√
2
(| ↑↓〉 − | ↓↑〉)

|+〉 = | ↑↑〉
|−〉 = | ↓↓〉
|±〉 = 1√

2
(| ↑↓〉 + | ↓↑〉).
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These states may be interpreted as an empty site, occupation by a + or a− particle and a bound
state, respectively. An advantage of this identifcation is that we may now write

M1 =
L∑
i=1

n+
i + n−i

M2 =
L∑
i=1

n−i .

Note that the transformation|0〉 ↔ |±〉, |+〉 ↔ |−〉, B → −B, J → −J , is a symmetry of
the system. Furthermore, the magnetic field and the rung interaction are dual to each other
since the transformation|0〉 ↔ |−〉, |+〉 ↔ |±〉, B ↔ J also leaves the model invariant.

It remains to investigate the thermodynamic properties of the ladder models. For the
example above without a magnetic field, it is easy to see that ifJ is large and positive,M1 = 0
for the ground state. In this case the system is completely empty and any excitation is massive.
Since the model is critical atJ = 0, there is a phase transition at some critical valueJc, similar
to that in thesu(4) case [5]. By a similar analysis it follows that for large but negativeJ

the system is massive again, but now completely filled. At negativeJ there therefore exists
another critical point, again similar to that of [5]. In principle, one should be able to calculate
the location of these phase transitions exactly. However, little is known about the Bethe
Ansatz solutions for the quantum spin chains associated with the orthogonal and symplectic
Lie algebras.

This work is supported by the Australian Research Council.
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